# Long-Term Response Decision Support Tool for Debris-Flow Mitigation

## Step 1: Calculate Debris Volume

#### Compile input values:

- + Area of slopes >  $30\% (17^{\circ}) = ___ km^2$
- + Area of moderately and severely burned slopes = \_\_\_\_ km<sup>2</sup>
- + Design Storm Total = \_\_\_\_ mm
- + Based on the values above determine the value for A, B, and C from the graphs.

## Volume $(m^3) = A \times B \times C$

Note: Debris flow volumes determined by the Western U.S. Model (Gartner, 2005) with 68% confidence limits. Equation provided below.

 $V=EXP(0.65(ln S)+0.86(B^{1/2})+0.22(R^{1/2})+6.46)$ 

## **Step 2: Identify Risk**

#### Basin Risk Level

**Critical**: Potential to impact vital infrastructure, human life, or create large environmental problems.

**Moderate**: Significant Impact to secondary roads and structures, low risk of loss of life, and minor environmental problems.

**Low**: Little or no potential to impact life, secondary structures, or environment.

Negligible: Not a consideration.









## Step 3: Select Treatment Based on Risk and Cost

# Treatment Recommendations Based on Assessed Risk

**Critical:** Relocation, debris basin, debris rack, or deflection berm,

**Moderate:** Relocation, debris basin, debris rack, or deflection berm.

Low: None.

Negligible: None.

Relative Cost (2005) per ??? < \$400 \$400 to \$800 > \$800

#### **Engineering Considerations**:

- Debris-flow volume
- Frequency of occurrence
- Maximum discharge and flow depth
- Potential impact forces
- Potential runout distance
- Potential runup and superelevation
- Probable storage angle
- Flow magnitude
- Gradation of coarse degree

#### Other Considerations:

- Available space
- Location of other structures

based on site constraints.

- Channel gradient
- Channel geometry







